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1 Introduction

This paper investigates equilibrium theory for non—cooperative games

in which the information about the players’ preferences is confined to their

preference orders on the set of pure strategy combinations. Players’ risk

attitudes, as represented by von Neumann—Morgenstern utility functions

(von Neumann and Morgenatern, 1947; Fishburn, l976~, are not presumed to be

known in the analysis. We shall assume a finite number n > 2 of players,

indexed by i — 1,2,... ,n, and use the following notations and assumptions

throughout:

a nonemp ty finite set of pure strategies for i;

P~ , the set of all mixed strategies (probability distributions on X~)

for i;

>~~~, an asymmetric weak order for i on X ~~~~~~~~~ so that >~~ is asy=etric

(x >~ y ~ not (y >~ x))  and negatively transitive (x >~ y and

z E X ~ x >
~~ 

z or z >
~~ 

y) ,  with x >

~~ 
y signifying that i prefers x

to y;

U1, the set of all real valued functions on X that preserve >~~~, so that

E U~ if and only if, for all x,y E X, x >

~ 
y if f u~ (x) > ui (y) .

In addition , P — X~~ 1P~ is the set of all n—tuples of mixed strategies

p — (p ,... ,p), and u~ is extended from X to P multilinearly as u .(p)

E u (x ,. . . ,x )p (x ).. .p (x ). When u E U is individual i’s von Neumann—
X i 1 ~~~~~~i 1 n n i i

Morgenstern utility function on X, his preferences on P are such that he

prefers p to q iff u
1(p) 

> u~ (q).
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The usual non—cooperative theory , as presented by Nash [1951) and Luce

and Raiffa [1957], among others , assumes the knowledge of all players ’ risk

attitudes. That is, in addition to (> ,...,> ) , it assumes tha t each pl ayer ’s

von Neumann—Morgenstern utility function u~ E u~ (unique up to positive aftine

transformations) is known. Although weakening or deletion of this strong and

often unrealistic assumption raises many interesting possibilities for analysis,

I shall focus here on the case in which (> ,... ,> )  represents the state of

relevant information on the preferences and risk attitudes of the players.

Because ab sence of knowledge abou t an individual’ s risk attitudes in the risky

decision context corresponds to analysis by first degree stochastic dominance

(Wh itmore and Findlay, 1977] from an expected—utility viewpoint, I shall refer

to a non—cooperative game based on (> ,..., > )  as a stochastic dominance game .

The rela tionsh ip be tween stochas tic dominance and equilibr ia based on (> ,... ,>~~)

will become clear as we proceed.

Our focus on (> ,..., > ) or on the set U X. .xU of all utility functions
1 fl 1 fl

consistent with (> ,..., > )  can be interpreted in several ways. First, if the

only available public information on the players’ preferences and risk attitudes

consists of (> ,..., > ), then it seems reasonable to look at the game fromn

this viewpoint so far as a “public” analysis is concerned. Alternatively, if

the purpose of the analysis is to examine the collection of all non—cooperative

games whose utility—function n— tuples are consistent with 
~~~~~~~~~~ 

then

)(U~ provides the relevant information base for utilities. Another way to look

at our setting is to suppose that every player knows every other player’s

preferences on X but is ignorant of their risk attitudes and knows that every

other player is ignorant of his risk attitudes. Even if every player knows his

own risk attitudes, it can be argued that each should use XU~ as his primary

A
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basis for analysis. For example, when n — 2, player 1 may presume that player

2’s actual information about utilities is U X(u*}, but since 1 does not know

which u E U obtains and since 2 knows that 1 does not know which u E U

ob tains , both should proceed as if any (u ,u )  E UX U  might obtain. Thi: of

course need not preclude either player from looking at the U XU —based analysts

from the perspec tive of his own true u~ , but in doing this he should bear in

mind that the other player does not know his u~.

The paper is organized as follows. The next section presents the basic

stochas tic dominance rel ations , defines the set SD(> ,... ,>~ ) of SD equil ibr ia

for the stochas tic dominance game as the set of all p E P such that p~ is SD—

eff icient agains t P(j) — 

~~~~~~~~~~~~~~~~~~~~~~ 
and then proves that the

set of SD equilibria equals the union of all Nash equilibria for the different

(u ,.. .,u )  ~~~~ The section concludes with co ents on uniform equilibria,

which are Nash equilibr ia for every possible choice of (u ,...,u).

The latter part of the paper looks at antagonistic stochastic dominance

games, which are stochas tic dominance games in which some (u ,. . . ,u )  EXU~
has Ejui

(x) = 0 for all x E X. Section 3 presents a characterization of

antagonism in terms of stochastic dominance relations on the set P+ of all

probability distributions on X. It then identifies some aspects of two—person

antagonistic games that are similar to aspects of two—person zero—sum games.

The final section presents two examples of two—person antagonistic games that

illustrate preceding results and definitions.

2. Stochastic Dominance and Equilibria

This section justifies the phrase “stochastic dominance games” by showing

that a straightforward application of stochastic dominance concepts to a game
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whose analysis is based on (> ,...,> )  is tan tamount to a Nash—equilibrium

analysis of all non—cooperative games whose utility functions are congruent

with (> ,...,>). The latter part of the section discusses SD equilibria

that are Nash equilibria for all possible risk attitudes of the players .

The basic results for stochastic dominance that we shall use will be

developed first. Given probability distributions a and B on a nonempty

finite set A, and an asymmetric weak order > on A, we say that a stochastically

dominates B with respect to >
~~

, and write this as a D(> ) 8, if and only if

for every y € A the probability that a yields an x E A worse than y (y > x)

no greater than the probability that B yields an x E A that is worse than

y. Thus

a D(> ) ~ iff Z a(x) < Z 8(x) for all y E A.
0 {x:y> x} {.x:y> x}

Strict stochastic dominance is denoted by SD(> ), with a SD(> ) B if f
0 0

a D( > ) B and not (B D(> ) a].
0 0

Two main lemmas on stochastic dominance will be needed in this section.

The first lemma identifies a primary reason for interest in the stochastic

dominance idea in connection with expected utility theory. It has been proved

by Lehmann (1955], Quirk and Saposnik (1962], and Fishburn (1964], among others.

The second lenuna is tantamount to Proposition 2 in Fishburn (l974bJ. In the

lemma s , a , 8, 
~~ 

8k are probability distributions on finite A, > is an

asymmetric weak order on A, U — (all real valued functions u on A that have

u (x) > u (y) iff x > y , for all x ,y E A), and u (a) — Zu (x)cz(x).

Lemma 1: a Do ) 8 iff u (a) > u (8) for all u E U ; a SD(> ) 8 1ff
0 0 0 0 0 0

u (a) > u (B) for all u € U
0 0 0 0

A
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Lemma 2: If E~~ 1 1k SD(’) 
~~~~ 

1
k 8k for no (A ,...,A )  for which

— 1. and A > 0 for k — l,...,m, then there is a u E U such thatk k — — o  o
u (B.c

) > u (a1) for k —
0 0 L

In the non—cooperative game context o~ the present paper , each p E P

induces a probability distribution on X in the natural way , so for all

p,q € P and for all i E {l,...,n) we define D(>1) by analogy as

p D(>~) q 1ff E p (x )...p (x ) < E q (x )...,q (x )
{x:y>ix} 

1 1 ~ n (x:y>~x} 
1 1 fl fl

for all y E X ,

with p SD(>
1) q 1ff p D(>i) q and not [q D(>~) pI. For each p € P and

i E (1,. ..,n} let 1’(i) 
— (p

1’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
and write p as

With 
~(i) 

the set of all such 
~(i~’ 

we shall let Sj(P(i)) be the set of

mixed strategies for player i that are SD(>i) efficient against P(j) E

so that

E Sj(P(~)) 1ff (~~1P(~)) SD(>i) ~~j~P(j)) for no q~ 
E p

1
.

It is easily seen that S1(P(~)) must contain a pure strategy in P1 and that

the correspondence S~ : P(1) 
-

~~ P1 is not generally continuous.

On the basis of the foregoing we shall say that p E P is an SD equilibrium

if and only if each p1 is SD(>~) efficient against P(j)• The set SD(> ,.. 
~~~~~~

of all SD equilibria for (> , . . . ,> )  is

SD(> ,...,>) — (p E P: p
1 
E S~ (P(1)) for i — 

- — — — - — -- -- - -
~~~~

-- 
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘I— .
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Juxtaposed against this definition, let S(u ,. ..,u )  be the set of Nash

equilibria in P for (u ,.. .,u )  so that

S(u ,...,u0
) — (p E P: u~(P~~P(1)) u

1
(q

1
,p ,1~~) for all q1 E

and all i € (l,...,n}}.

We know from Nash [1951] that S(u ,.. ,u )  is never empty. We know also from

Nash (1951], Gale (1953], and Luce and Raiffa (1957), among others, that if

S(u ,.. . ,u~) contains more than one equilibrium, then the elements in

S(u ,.. . ,u )  might not be interchangeable or equivalent, and in fact it is

possible to have u
1(p) > u~(q) for all I when p,q E S(u ,...,u). The

difficulties that these phenomena pose for the analysis of non—cooperative

games are discussed at length by Luce and Raiffa (Chapter 5, Section 7.8], and

I shall not dwell on them here.

The basic relationship between SD equilibria and Nash equilibria is given

by the following theorem. This theorem shows that SD(> ,... >) is never

empty, and it provides a way of computing all SD equilibria from the Nash

equilibria.

Theorem 1: SD(> ,...,>) — U{S(u~~...~ u~): (u ,. .. ,u )  E 
~~ 

u~}.i— 1

Proof: Suppose first that p ~ SD(> , . . . ,> ) ,  so that p ~ S (p ) for
n i i (i)

some i. Given 
~ 
Sj(P(j))~ Lemma 1 implies that u~ (q~ ,p

(~)
) > u~(p) for

some q1 E P~ and for all u1 E U~ , so that p ~ US(u ,.. . ,u
0
). Therefore

p E US(u ,...~ u~) ~ 
p E SD(> ,...,>). Suppose next that p E SD(> ,...,> ),

so that E S1(P(~)) for all 1, and consider 1 1. Let X {x ,x ,. ..,xlK
},

let p’ = (x
lk~P(l)

) and qk — p for k — l,...,K——where (x lk~
P(l)
) stands for



- - — ------ ------- —--—----.—,--.—-—-—---———-- ~- - -

7

(r )P(1)
) with r (x tk) 

— 1—and let Ak 
— q(x lk) for all It. Since p E

there is no q E P for which (c~ P(1)) SD(> ) p, which is to say that there

is no (A )...,A
K
) — (q (x ),.. . ,q (x )) for which ZA kp

k SD(> ) EA~qk.

~1ence, by Lemma 2, there is a u € U for which u (p) > u (x ‘p ) for all
1 1 1 — 1 1 ( 0 )

x E X , which by linearity implies that u (p) > u (c .P(1)) for all q E P .

A similar application of Leuma 2 to each I > 1 shows that there is a u1 E

such that u~(p) > u
~(cI~P(j)

) for all q1 E P1. Thus p E SD(> ,...,> )

p E S(u ,...,u) for some (u ,...,u) EXU1, and the proof is complete .

To illustrate further the connection between stochastic dominance and Nash

equilibria we define p E P as a uniform equilibrium for (> , . . . ,> )  if and only

if p E S(u ,.. .,u ) for all (u ,...,u) EXU~. Uniform equilibria are attractive

from the stochastic dominance viewpoint since they are Nash equilibria for all

possible risk attitudes of the players that are consistent with ~~~~~~~~~~~~~

However, uniform equilibria may not exist for an SD game, and even if they do

exist then some of them may not be desirable from the players’ viewpoints.

For example , in Nash’s sixth example (1951 , p. 292], the two—person game with

— {x~,y~} for i 1,2 with (x ,x) >
~ 
(x ,y) .-

~~~ 

(y, x )  ....
~ 

(y ,y ) for

i 1,2 [where ..
~~~ 

denotes indifference for ii has uniform pure equilibria

(x ,x )  and (y ,y), the latter of which is obviously inferior.

The definition just given says that p is a uniform equilibrium if f

u~(p) > u~ (x~~P(1)) for all u~ 
E ~~~ all x1 E and all i E (1,... ,n}. Lemma

1 then implies that p is a uniform equilibrium 1ff p D(>i)(xj~P(i)
) for all

and all i. The definition of D(> 1) then says that p is a uniform equilibrium

if f

E p(z)...p (z ) < miii E p (z
1
)...pi_0 (zi 1 )Pj+1(zj+1)

{z:y>~z} X1 {z(~):Y>1(x1~z(1~ }

.. .p (z0
)

~ 

4
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for all y E X and all I, where 5(i) is z with z~ omitted and (x j z (1))

— (z
1
i...,zj..1~

xj~
zj+11...~

z
0
). The preceding inequality must in fact be

an equality, and by looking only at the x1 for which p1
(x
1
) > 0, it is

easily seen that a necessary but not sufficient conditioi~ for p to be a

uniform equilibrium is that it satisfy the following system of equalities:

{ . > 
£ 

) } l i
Pi_ l i_ l Pi+l i+i) P n

(
n
)

z(1).y i
(x
i~
z(j)

— ~~ 
. > 

£ 
} l L

Pi_ l i_ i Pi+l i+l ..p (z )

(j ) ~~~~ 
~~~~~~~~~

for all y E X, all x1,x E for which P~ (X~)P1(X;) > 0, and all i K (1,...,n}.

In the two—person game with X~ — {x~,y1}, (x ,x )  — (y ,y ) > (x ,y)

(y ,x ) and (x ,y ) — (y ,x ) > (x ,x ) — (y ,y ), there is a unique

uniform :quilibrium that has p~(x~) — p~ (y1
) — 1/2 for each I. This equilibrium

is the only Nash equilibrium for each (u ,u )  E U X U  in what amounts to a

zero—sum game.

3. Antagonistic Games

The preceding example illustrates a two—person antagonistic game, which H
is a two—person game in which the players’ preference orders on X are the

duals (converses, inverses) of each other so that x > y 1f f  y > x, for all

x,y E X. Since > is the dual of > if and only if there are u E U and

u E U such that u Ox) + u (x) — 0 for all x € X , two—person antagonistic

games In the (> ,> )  setting correspond in a natural way to two—person zero—sum

games in the traditional setting. However, since non—constant—sum (u ,u ) pairs

will exist for any two—person antagonistic game that has x > y > z for some



~1
x,y,z € X, the analysis of such games from the stochastic dominance view-

point is more involved than the zero—sum analysis. We return to this

shortly.

In gener~il I shall use the zero—sum basis to define antagonism and

say that (> , . .., > )  is ~~~~~~~~~~~ if and only if there exists (u ,. . . ,u )
EXU1 for which £jui(x) — 0 for all x E X. For n > 3 this definition is not

tantamount to the requirement that, for all x ,y K X, if x >
1 
y for some i

then y >~ x for some j ~ i although every antagonistic (> , . . ., > )  must

satisfy this requirement. For example, if n — 3, if (a,b,c,x,y,z} ~ X, and

if the three players have preference orders whose restrictions on (a,... ,z}

by decreasing preference are

1. axbycz

2. bzcxay

3. cyazbx,

then (> , > , > ) cannot be antagonistic since it must be true that
1 2 3

Z
i
[u
i
(a) + u

1(b) + ui(c)] > £1(u1(x) + u1
(y) + u1(z)], but for all r,s €

(a,... ,z} with r s there are 1 and j such that r >
~~ 
s and s >~ r. If

a and 8 are distributions on X with a(a) — a(b) a(c) — 1/3 and 8(x) — 8(y) —
8(z) — 1/3, then a SD(>~) B for i — 1,2,3. On the other hand, if (> , .. .

is antagonistic, then this type of uniform SD result is impossible. This is

stated precisely in the following theorem, which characterizes antagonism in

terms of stochastic dominance. In the theorem, denotes the set of all

probability distributions on X, and the D(>i) and SD(>1) are to be viewed in

terms of the definitions of DO> ) and SD(> ) near the beginning of section 2.
0 0

~-—~~- ~~~~~~~~~~~~~~~~~~~~~~~ ----- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In general, P~ will contain many distributions that do not correspond to

any p E P. For example, the distribution a on X — {x ,y }x (x ,y) that has

ct(x ,x) — ct(y ,y ) — 1/2 cannot be realized by any (p1 ,p
2
) € P.

Theorem 2: (> ,...,> )  is antagonistic if and only if there do not exist

ct,$ € P~ such that a DO>1) 8 for all i along with a SD(>1) 8 for some i.

The proof of this theorem uses a generalization of Lemma 2 whose proof

is similar to the proof of Lemma 5 in Fishburn [l974a] and will not be redrawn

here. The new lemma is as follows.

Lennua 3: Suppose that U is a nonempty convex cone of real valued functions

on X, so that au + by E U whenever u,v E U and a,b > 0, and that >~~ on P~ is

defined by a >~~ 8 if f u(a) > u(8) for all u E U, where u ~~ p+ is the linear

extension of u on X. Then for each “ E {l,2,. . .} there exists (A ,... SAm
)

with A.K 
> 0 for all k and EA

k 
— 1 such that Z~ A

k 
~k >

+ 
E~ A

k 
8
k where the

a and 8 are in P , if and only if for every u E U there is a k E (1,... ,m}

k ksuch that u(a ) > u( B ).

Proof of Theorem 2: Suppose first that (> ,...,> )  is antagonistic and

a D( >
i) B 

for all 1. Then, by Lemma 1, u~ (a) > u~(8) for all u~ E U~ and all

i, so that Z1u1(ct) > Z
1
u
i(B)

. By the definition of antagonism let the

u~ E U~ satisfy E1
u~(x) — 0 for all x E X. Then E1u~ (ct) = 0 E

1
u~(B), which

along with u~ (a) > u~(3) for all I implies that u~ (a) = u~(8) for all 1. The

second part of Lemma 1 then says that not (a SD(>i
) 8] for every i, and in

fact we get both a D(>~ ) 8 and 8 D( >~) a for all i.

For the converse proof let U — {E
1
u~ : u

1 
E U~ for all i}, which is a

nonempty convex cone of real valued functions on X, and let >~~ on p
+ be as
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defined in Lemma 3. Now if there exist a,8 E P+ such that u(a) > u(s) for

all u € U, or a >~ 8, then u~(a) > u
1(~) for all u~ K and all i——hence

a D(>i) 8 for all i—and, in addition, u1(a) > u~($) for some u~ , which by

L e a  1 says that a SD(>~) B for this I. Hence suppose that there do not

exist a,8 E p
+ such that a DO>

1) 8 for all I and a SD(>~) B for some 1. Then,

as just proved, there do not exist a,B E p+ such that a >~ 8. Consequently,

with X — (x 1 ,...,xK} and with (xkj the distribution in P~ that assigns probability

i. to xk, there does not exist a K—by—K P matrix with 
~jk 

> 0 for all j,k €

Cl,...,K} and E
J
E
kPJk 

— 1 such that E
k
E
jPjk

(x’
~
] >

~~
E
j
E
kPjk

(x
~
]. Therefore, by

Lemma 3 with in — K2 , there exists a u E U such that u([x1’]) < u([x~]) for all

j and k. (In other words, with xik — ~
k and yik — x~, Lemma 3 implies that

u(xik ) < u(y~~ ) for all (j , k) pairs , so that u(xk) < u(x~ ) for all j  and It .)

Hence u(xk) — u(x~) for all j and k so that u is constant on X. Since u — Eu~

for some u1 E U1, it follows that (> ,...,> )  must be antagonistic. This

completes the proof.

Just as traditional zero—sum games have features that are not shared by

general games, antigonistic games exhibit aspects that are not shared by general

non—cooperative games whose analyses are based on (> ,...,>). A case in point

is seen from Theorem 2 , which says in part tha t if (> ,...,> )  is antagonistic

then it cannot be true for p,q E P that p DO>1) q for all I and p SD(>~) q for

some 1. In particular, if (> ,...,> )  is antagonistic and p,q E SD(> ,.. .,>~)

then it must be false that p DO>1) q for all I and p SD(>1) q for some i. On

the other hand it is easy to construct games with non—antagonistic (> ,...,> )

that have p,q € SD(> ,. .. 
~
>
~
) along with p SD(>

1
) q for all I.

There are also important differences between two—person antagonistic games

and n—person antagonistic games for n > 3 that reflect some of the differences

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



12

between two—person zero—sum games and n—person zero—sum games for n > 3.

We note first some results for two—person antagonistic games.

Theorem 3: Suppose n 2 and (> ,> ) is antagonistic. If e — (e ,e )— 1 2  — 1 2

is a pure—strategies equilibrium in SD(> ,> ) ,  and if p € SD(> ,> ), then
1 2  1 2

both p SD( >~ ) e and e SD(> 1
) p must be false for I — 1 and for I — 2. In

addition, all pure—strategies eQuilibria are interchangeable and equivalent.

That is, if e — (e ,e )  and e — (e ,e) are pure—strategies equilibria in

SD(> ,> ) ,  then so are (e ,e )  and (e ,e ) ,  and (e ,e ) - (e ,e )  for
1 2  1 2  1 2  — 1 2  ~ 1 2

I a 1,2, where x y if f neither x >
1 

y nor y >
1 
x.

Proof: Suppose with (> ,> )  antagonistic that e E X and p E P are such

that p SD(> ) e, and that e,p K SD(> ,>). (By a slight abuse of notation we

consider e € X to be in P also, where e € P signifies the (q ,q ) E P that has

q (e ) — q (e ) = 1.) Then Lemma 1 and p SD (> ) e imply that u (p) > u (e)
1 1 2 2 1 1 1

for all u E U . Also , since e E SD(> ,> ) and Theorem 1 imply that u (e) >
1 1 1 2  1 —

u (x ,e ) for all x E X for some (hence for all) u E U , we get u (e) >
1 1 2 1 1 1 1 1 —

u (p ,e ) for all u E U • In addition, since p E SD(> ,> ) ,  there exists
1 1 1 1 1 1 2

u E U such that u (p ,p ) > u (p ,e ) and hence there is a u E U , e.g.
2 2 2 1 2 2 1 2 1 1

u —u , such that u (p ,e ) > u (p). Altogether then the hypotheses of this

paragraph imply that there is : ii € U for which u (e) > u (p ,e) > u (p) >

u (e) , which is absurd. Hence e,p € SD(> ,> ) and (> ,> ) antagonistic imply

not [p SD(>) e]. Under the same hypotheses, similar proofs show that none of

p SD( > ) e, e SD(> ) p and e SD(> )  p can be true. The proof of the second

part of Theorem 3 is similar to the simple footnote proof on page 66 in Luce

and Raiffa [1957) and will be omitted.

______________________ 
_ _ _ _
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The two—person results of Theorem 3 do not generalize in any straight-

forward way to antagonistic games with n > 3. For example, it is easy to

construct such games for n — 3 that have exactly two pure—strategies equilibria

in SD(> ,> ,> ), say (e ,e ,e ) and (e ,e’,e), with e # e for i — 1,2,3 and
1 2 3  1 2 3  1 2  3 1 1

with e > e , e > e~ and e
’ e. The latter imply of course that e SD(>1) e

for i — l ,Z and thate S D (> )e.
3

Hence the difficulties encountered with n—person antagonistic games for

n > 3 are not unlike those faced by n—person non—cooperative zero—sum games

for ii > 3. But this still leaves open the possibility that two—person

antagonistic games have certain nice features beyond those already noted In

Theorem 3. As shown in the next section, this possibility is largely unfulfilled.

4. Two—Person Antagonistic Examples

This section presents two examples for two—person antagonistic games that

illustrate the theory developed in preceding sections and show that such games

lack certain properties that hold for two—person zero—sum games. The first

example is a prototypical 2—by—2 game with no saddle point In pure strategies;

F the other has a pure—strategies equilibrium. In each case > is identified by

an order—preserving u function on X X X X  that is not intended to reflect

the risk attitudes of the two players. For convenience we shall let ajj 
—

u Cx) when x is composed of the ith pure strategy for player 1 and the j t h

pure strategy of player 2. Hence each matrix is an ~~ matrix. Similarly ,

b = u (x) when x is composed of the ith pure strategy for player 1 and the
ij 2

jth pure strategy of player 2. Finally, we shall let A1 and U j be respectively

the probability in a mixed strategy for player 1 for his ith pure strategy and

the probability in a mixed strategy for player 2 for his jth pure strategy . 

~~~-
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Rvample 1: To illustrate Theorem 1 we consider the following 2—by—2

ajj matrix:

ii 1 — p
1 1

A 2 0
1

1 — A  1 3
1

For convenience we shall denote a mixed strategy for player 1 as A instead

of (A ,l—A ), and similarly for the second player. By the stochastic dominance

definitions of section 2, we have A E S (p ) 1ff (A ,p ) SD(> ) (A ,p )
1 1 1 1 1 1 1 1

for no A € [0,1]. Using the definition L ediately following Lemma 2,

A E S (p ) if f, for each A” E (0,1],
1 1 1

either (1 —p )(A — A )  > 0, [y has ajj — 1]

or (l—p) (X” — A ) + p (A — A ” ) > 0 , (y has a — 2 ]
1 1 1 1 1 1 ij

or (l—p ) (A ” — A ) +p ( X  — A ) + p ( X — A )  > 0 , (y has a _ 3 ]
1 1 1 1 1 1 1 1 1 Ij

or equality holds in place of > in the preceding three lines.

Inspection of this system then shows that

S (p ) — {o} if p < 1/2

0 )  — [0,1] if 1/2 < < 1

SQ i ) = { l }  if i.~ — 1 ,
1

•
1 1

and a similar analysis for the eff icient sets for player 2 gives

S (A)— (l} ifX — O
2 1 1

S ( A )— ( O ,l] i f O < A  <1
2 1 1

S (A)—{0 } ifA — 1.
2 1 1

- --

~

— - - - - - - -—_

~

—.  - - - .  ~~~~~~~ ~~~~ - . - - - --~~ --—~~~~~~~ -- - .~~~
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Therefore A K S (p ) and p K S (A ) 1ff 0 < A < 1 and 1/2 < p < 1, so
1 1 1 1 2 1 1 1

that SD(> ,> ) — (O,l)X(]./2,l). In other words, p K SD(> ,> ) if and only
1 2  1 2

if player 1 uses some probability strictly between 0 and 1 for his first

pure strategy and player 2 uses some probability strictly between 1/2 and 1

for his first pure strategy.

Consider next the determination of Nash equilibria for various (u ,u)

pairs. For convenience we normalize the u
1 
functions between 0 and 1 with

a — b  0, a — b  l, l > a  > a  > O a n d l > b  > b  >0. The
12 22 22 12 11 21 21 11

expected utilities are u (A ,p ) — p A a + p (1 — A )a + (1 — p ) (l  — A )
1 1 1 1 1 1 1  1 1 2 1  1

and u (A ,p ) p A b + p (1 — A )b + (1 — p )A . For a particular choice
2 1 1 1 1 1 1  1 1 2 1  1 1

of the a and b , the pair (A ,p ) is a Nash equilibrium 1ff u (A ,p ) >
ii ii 1 1  1 1 1

p (A” ,p )  for all A K [0,1] and u(A ,p) > u(A ,p’) for all p” E (0,1].

Since it Is clear that there are no such equilibria for A or p in {o ,i.},
assume that 0 <A <1 and 0 < p < 1. Reduction of the preceding inequalities

then shows that (A ,p ) E US(u ,u ) if and only if the a and b can be
1 1  1 2  ii ij

chosen such that

p l / ( l + a  — a  )
1 11 21

A — b  /(l+b — b  ),
1 2 1 21 11

which under the restrictions 1 > a > a > 0 and 1 > b > b > 0 gives
11 21 21 11

US(u ,u ) — (0,l)x(1/2,l). This is of course the same result arrived at for

SD(> ,> ) in the preceding paragraph, as required by Theorem 1.
1 2

One further point for this example is in order, and that is that the set

of all zero—sum equilibria In US(u ,—u) is a proper subset of SD(> ,>). In

the present case US(u ,—u ) is all (A ,p ) of the form ((1 — a )/(l + a — a ),1 1 1 1 21 11 2 1
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11(1 + a — a )) with 1 > a > a > 0, which is the union of (t/(l + t),11 21 11 21

11(1. + t))x{l/(l + t)}over all t strictly between 0 and 1. Thus there will

often be p E SD(> ,> ) that are Nash equilibrIa for (u ,u )  only when (u ,u)

is not constant or zero—sum.

Example 2: The ajj matrix for our second two—person antagonistic

example is

i~~~~u p p p
1 2 3 b S

A 6 1 3 3 2

A 1 6 3 3 2
2

A 3 3 5 0 2
3

A 3 3 0 5 2

A 4 4 4 4 3
S

Normalizing again so that max au 
— 1, miii a~1 

— 0, and similarly for the b1~~

we require

1 — a  > a  > a  > a  > a  > a  > a  = 0 ,
11 33 51 55 15 21 31

1 — b  > b  > b  > b  > b  > b  > b  —0.
31 21 15 55 51 33  11

The equilibria in SD(> ,> ) include p, q and e where
1 2

p has A — A  — p  — p  — 1/2,
~ 2 1 2

q has A — A  — p  — p  — 1/2,
3 ~. 3 b

e has A — p = 1.
5 5

The pure—strategies equilibrium e is a uniform equilibrium, but p is in S(u ,u )

-- --- -

~ 

- — - -  
_ _ _ _ _ _  _ _ _ _  

_ _ _ _ _ _ _ _ _
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iffl+a >2a and b >2b , and qis In S(u ,u ) iff a > 2 a
21 — 51 21 — 15 1 2 33 — Si

and l +b > 2b .
33 — 15

According to Theorem 3, SD(>1) cannot hold between e and p or between

e and q in either direction. However, since a > a and a > a ,
11 3 3  2 1  3 1

p SD(> ) q. Similarly q SD(> ) p. Hence even when a two-person antagonistic

game has a saddle point, stochastic dominance relationships can hold

between SD equilibria of the game.

~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~-~~~~~~~~~~~~~~~~~~~~~~ .— —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •1
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